7.2. Random Variables#

For different random variables, we will characterize their distributions by several parameters. These are listed below

  • Probability density function (PDF)

  • Cumulative distribution function (CDF)

  • Probability mass function (PMF)

  • Mean (μ or E(X))

  • Variance (σ2 or Var(X))

  • Skew

  • Kurtosis

  • Characteristic function (CF)

  • Moment generating function (MGF)

  • Second characteristic function

  • Cumulant generating function (CGF)

7.2.1. Cumulative Distribution Function#

The CDF is defined as

FX(x)=P(Xx).

Properties of CDF:

FX(x)0,FX()=0,FX()=1.

CDF is a monotonically non-decreasing function.

x1<x2FX(x1)FX(x2).

FX() is defined as

FX()=limxFX(x).

Similarly:

FX()=limxFX(x).

FX(x) is right continuous.

limxt+FX(x)=FX(t).

7.2.2. Probability Density Function#

Properties of PDF

fX(x)0.
fX(x)dx=1.

The CDF and PDF are related as

FX(x)=xfX(t)dt.

7.2.3. Expectation#

Expectation of a discrete random variable:

E(X)=xxpX(x).

Expectation of a continuous random variable:

E(X)=tfX(t)dt.

Expectation of a function of a random variable:

E[g(X)]=g(t)fX(t)dt.

Mean square value:

E[X2]=t2fX(t)dt.

Variance:

Var(X)=E[X2]E[X]2.

n-th moment:

E[Xn]=tnfX(t)dt.

7.2.4. Characteristic Function#

The characteristic function is defined as

ΨX(jω)E[exp(jωX)].

PDF as Fourier transform of CF.

ΨX(jω)=ejωxfX(x)dx.
fX(x)=12πejωxΨX(jω)dω
ΨX(j0)=E(1)=1.
ddωΨX(jω)|ω=0=jE[X].
d2dω2ΨX(jω)|ω=0=j2E[X2]=E[X2].
E[Xk]=1jkdkdωkΨX(jω)|ω=0.

Let Y1,,Yk be independent. Then

ΨY1++Yk(jω)=Y1,,YKE[exp(jωYi)].

7.2.5. Moment Generating Function#

The moment generating function is defined as

MX(t)E[exp(tX)].