7.2. Random Variables
For different random variables, we will
characterize their distributions by several
parameters. These are listed below
Probability density function (PDF)
Cumulative distribution function (CDF)
Probability mass function (PMF)
Mean (\(\mu\) or \(\EE(X)\))
Variance (\(\sigma^2\) or \(\Var(X)\))
Skew
Kurtosis
Characteristic function (CF)
Moment generating function (MGF)
Second characteristic function
Cumulant generating function (CGF)
7.2.1. Cumulative Distribution Function
The CDF is defined as
\[
F_X (x) = \PP ( X \leq x).
\]
Properties of CDF:
\[
F_X(x) \geq 0, \quad F_X(-\infty) = 0, \quad F_X(\infty) = 1.
\]
CDF is a monotonically non-decreasing function.
\[
x_1 < x_2 \implies F_X(x_1) \leq F_X(x_2).
\]
\(F_X(-\infty)\) is defined as
\[
F_X(-\infty) = \lim_{x \to - \infty} F_X(x).
\]
Similarly:
\[
F_X(\infty) = \lim_{x \to \infty} F_X(x).
\]
\(F_X(x)\) is right continuous.
\[
\lim_{x \to t^+} F_X(x) = F_X(t).
\]
7.2.2. Probability Density Function
Properties of PDF
\[
f_X(x) \geq 0.
\]
\[
\int_{-\infty}^{\infty} f_X(x) d x = 1.
\]
The CDF and PDF are related as
\[
F_X(x) = \int_{-\infty}^x f_X(t ) d t.
\]
7.2.3. Expectation
Expectation of a discrete random variable:
\[
\EE (X) = \sum_{x} x p_X(x).
\]
Expectation of a continuous random variable:
\[
\EE (X) = \int_{- \infty}^{\infty} t f_X(t) d t.
\]
Expectation of a function of a random variable:
\[
\EE [g(X)] = \int_{- \infty}^{\infty} g(t) f_X(t) d t.
\]
Mean square value:
\[
\EE [X^2] = \int_{- \infty}^{\infty} t^2 f_X(t) d t.
\]
Variance:
\[
\Var(X) = \EE [X^2] - \EE [X]^2.
\]
\(n\)-th moment:
\[
\EE [X^n] = \int_{- \infty}^{\infty} t^n f_X(t) d t.
\]
7.2.4. Characteristic Function
The characteristic function is defined as
\[
\Psi_X(j \omega) \triangleq \EE \left [ \exp (j \omega X) \right ].
\]
PDF as Fourier transform of CF.
\[
\Psi_X(j\omega) = \int_{-\infty}^{\infty} e^{j \omega x} f_X(x) d x.
\]
\[
f_X(x) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega x} \Psi_X(j\omega) d \omega
\]
\[
\Psi_X(j 0) = \EE (1) = 1.
\]
\[
\left. \frac{d}{ d \omega} \Psi_X(j\omega) \right |_{\omega = 0} = j \EE [X].
\]
\[
\left. \frac{d^2}{ d \omega^2} \Psi_X(j\omega) \right |_{\omega = 0} = j^2 \EE [X^2] = - \EE [X^2].
\]
\[
\EE [X^k] = \frac{1}{j^k} \left. \frac{d^k}{ d \omega^k} \Psi_X(j\omega) \right |_{\omega = 0}.
\]
Let \(Y_1, \dots, Y_k\) be independent. Then
\[
\Psi_{Y_1 + \dots + Y_k} (j \omega) = \prod_{Y_1, \dots, Y_K} \EE [ \exp (j \omega Y_i)].
\]
7.2.5. Moment Generating Function
The moment generating function is defined as
\[
M_X(t) \triangleq \EE \left [ \exp (t X) \right ].
\]