7.3. Univariate Distributions#

7.3.1. Gaussian Distribution#

7.3.1.1. Standard Normal Distribution#

This distribution has a mean of 0 and a variance of 1. It is denoted by

\[ X \sim \NNN(0, 1). \]

The PDF is given by

\[ f_X(x) = \frac{1}{\sqrt{2\pi}} \exp \left ( - \frac{x^2}{2} \right ). \]

The CDF is given by

\[ F_X(x) = \int_{-\infty}^x f_X(t) d t = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp \left ( - \frac{t^2}{2} \right ) d t. \]

Symmetry

\[ f(-x) = f(x). \quad F(-x) + F(x) = 1. \]

Some specific values

\[ F_X(-\infty) = 0, \quad F_X(0) = \frac{1}{2}, \quad F_X(\infty) = 1. \]

The Q-function is given as

\[ Q(x) = \int_{x}^{\infty} f_X(t) d t = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp \left ( - \frac{t^2}{2} \right ) d t. \]

We have

\[ F_X(x) + Q(x) = 1. \]

Alternatively

\[ F_X(x) = 1 - Q(x). \]

Further

\[ Q(x) + Q(-x) = 1. \]

This is due to the symmetry of normal distribution. Alternatively

\[ Q(x) = 1 - Q(-x). \]

Probability of \(X\) falling in a range \([a,b]\)

\[ \PP (a \leq X \leq b) = Q(a) - Q(b) = F(b) - F(a). \]

The characteristic function is

\[ \Psi_X(j\omega) = \exp\left ( - \frac{\omega^2}{2}\right ). \]

Mean:

\[ \mu = \EE (X) = 0. \]

Mean square value

\[ \EE (X^2) = 1. \]

Variance:

\[ \sigma^2 = \EE (X^2) - \EE(X)^2 = 1. \]

Standard deviation

\[ \sigma = 1. \]

An upper bound on Q-function

\[ Q(x) \leq \frac{1}{2} \exp \left ( - \frac{x^2}{2} \right ). \]

The moment generating function is

\[ M_X(t) = \exp\left ( \frac{t^2}{2}\right ). \]

7.3.1.2. Error Function#

The error function is defined as

\[ \erf(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x \exp\left ( - t^2 \right) d t. \]

The complementary error function is defined as

\[ \erfc(x) = 1 - \erf(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} \exp\left ( - t^2 \right) d t. \]

Error function is an odd function.

\[ \erf(-x) = - \erf(x). \]

Some specific values of error function.

\[ \erf(0) = 0, \quad \erf(-\infty) = -1 , \quad \erf (\infty) = 1. \]

The relationship with normal CDF.

\[ F_X(x) = \frac{1}{2} + \frac{1}{2} \erf \left ( \frac{x}{\sqrt{2}}\right) = \frac{1}{2} \erfc \left (- \frac{x}{\sqrt{2}}\right). \]

Relationship with Q function.

\[ Q(x) = \frac{1}{2} \erfc\left (\frac{x}{\sqrt{2}} \right) = \frac{1}{2} - \frac{1}{2} \erf \left ( \frac{x}{\sqrt{2}} \right ). \]
\[ \erfc(x) = 2 Q(\sqrt{2} x). \]

We also have some useful results:

\[ \int_0^{\infty} \exp\left ( - \frac{t^2}{2}\right ) d t = \sqrt{\frac{\pi}{2}}. \]

7.3.1.3. General Normal Distribution#

The general Gaussian (or normal) random variable is denoted as

\[ X \sim \NNN (\mu, \sigma^2). \]

Its PDF is

\[ f_X( x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left ( \frac{1}{2} \frac{(x -\mu)^2}{\sigma^2}. \right) \]

A simple transformation

\[ Y = \frac{X - \mu}{\sigma} \]

converts it into standard normal random variable.

The mean:

\[ \EE (X) = \mu. \]

The mean square value:

\[ \EE (X^2) = \sigma^2 + \mu^2. \]

The variance:

\[ \EE (X^2) - \EE (X)^2 = \sigma^2. \]

The CDF:

\[ F_X(x) = \frac{1}{2} + \frac{1}{2} \erf \left ( \frac{x - \mu}{\sigma\sqrt{2}}\right). \]

Notice the transformation from \(x\) to \((x - \mu) / \sigma\).

The characteristic function:

\[ \Psi_X(j\omega) = \exp\left (j \omega \mu - \frac{\omega^2 \sigma^2}{2}\right ). \]

Naturally putting \(\mu = 0\) and \(\sigma = 1\), it reduces to the CF of the standard normal r.v.

Th MGF:

\[ M_X(t) = \exp\left (\mu t + \frac{\sigma^2 t^2}{2}\right ). \]

Skewness is zero and Kurtosis is zero.