7.3. Univariate Distributions#

7.3.1. Gaussian Distribution#

7.3.1.1. Standard Normal Distribution#

This distribution has a mean of 0 and a variance of 1. It is denoted by

XN(0,1).

The PDF is given by

fX(x)=12πexp(x22).

The CDF is given by

FX(x)=xfX(t)dt=12πxexp(t22)dt.

Symmetry

f(x)=f(x).F(x)+F(x)=1.

Some specific values

FX()=0,FX(0)=12,FX()=1.

The Q-function is given as

Q(x)=xfX(t)dt=12πxexp(t22)dt.

We have

FX(x)+Q(x)=1.

Alternatively

FX(x)=1Q(x).

Further

Q(x)+Q(x)=1.

This is due to the symmetry of normal distribution. Alternatively

Q(x)=1Q(x).

Probability of X falling in a range [a,b]

P(aXb)=Q(a)Q(b)=F(b)F(a).

The characteristic function is

ΨX(jω)=exp(ω22).

Mean:

μ=E(X)=0.

Mean square value

E(X2)=1.

Variance:

σ2=E(X2)E(X)2=1.

Standard deviation

σ=1.

An upper bound on Q-function

Q(x)12exp(x22).

The moment generating function is

MX(t)=exp(t22).

7.3.1.2. Error Function#

The error function is defined as

erf(x)2π0xexp(t2)dt.

The complementary error function is defined as

erfc(x)=1erf(x)=2πxexp(t2)dt.

Error function is an odd function.

erf(x)=erf(x).

Some specific values of error function.

erf(0)=0,erf()=1,erf()=1.

The relationship with normal CDF.

FX(x)=12+12erf(x2)=12erfc(x2).

Relationship with Q function.

Q(x)=12erfc(x2)=1212erf(x2).
erfc(x)=2Q(2x).

We also have some useful results:

0exp(t22)dt=π2.

7.3.1.3. General Normal Distribution#

The general Gaussian (or normal) random variable is denoted as

XN(μ,σ2).

Its PDF is

fX(x)=12πσexp(12(xμ)2σ2.)

A simple transformation

Y=Xμσ

converts it into standard normal random variable.

The mean:

E(X)=μ.

The mean square value:

E(X2)=σ2+μ2.

The variance:

E(X2)E(X)2=σ2.

The CDF:

FX(x)=12+12erf(xμσ2).

Notice the transformation from x to (xμ)/σ.

The characteristic function:

ΨX(jω)=exp(jωμω2σ22).

Naturally putting μ=0 and σ=1, it reduces to the CF of the standard normal r.v.

Th MGF:

MX(t)=exp(μt+σ2t22).

Skewness is zero and Kurtosis is zero.